• home

IR–S PDIF Transmitter

The best-known ways to transmit a digital audio signal (S/PDIF) are to use a standard 75Ω coaxial cable or Toslink optical modules with matching optical cable. Naturally, it can happen that for whatever reason, you cannot (or don’t wish to) run a cable between the equipment items in question. With a wireless solution, you have the choice of a wideband RF transmitter or an optical variant. Here we describe a simple optical transmitter. The matching IR-S/PDIF receiver is described else-where in this website. Although designing such an IR transmitter/receiver system does not have to be particularly difficult, in practice there are still several obstacles to be overcome. For one thing, the LEDs must have sufficient optical switching speed to properly pass the high frequencies of the S/PDIF signal, and they must also produce sufficient light intensity to deliver a noise-free signal at the receiver over a reasonable distance.

IR–S/PDIF Transmitter Circuit DiagramAt a sampling frequency of 48 kHz, it’s necessary to be able to transfer pulses only 163 ns wide! The LEDs selected here (Agilent HSDL-4230) have optical rise and fall times of 40ns, which proved to be fast enough in practice. With a beam angle of only 17°, they can also provide high light intensity. The downside is that the combination of transmitter and receiver is highly directional, but the small beam angle also has its advantages. It means that fewer LEDs are necessary, and there is less risk of continuously looking into an intense infrared source. The circuit is essentially built according to a standard design. The S/PDIF signal received on K1 is amplified by IC1a to a level that is adequate for further use. JP1 allows you to use a Toslink module as the signal source if desired. JP1 is followed by a voltage divider, which biases IC1b at just below half of the supply voltage.

This causes the output level of the buffer stage driving switching transistor T1 to be low in the absence of a signal, which in turn causes IR LEDs D1 and D2 to remain off. The buffer stage is formed by the remaining gates of IC1. This has primarily been done with an eye to elevated capacitive loading, in the unlikely event that you decide to use more LEDs. A small DMOS transistor (BS170) is used for T1; it is highly suitable for fast switching applications. Its maximum switching time is only 10 ns (typically 4 ns). Getting D1 and D2 to conduct is not a problem. However, stopping D1 and D2 from conducting requires a small addition to what is otherwise a rather standard IR transmitter stage, due to the presence of parasitic capacitances.

Power Supply IR–S/PDIF Transmitter Circuit DiagramThis consists of R7 and R8, which are connected in parallel with the LEDs to quickly discharge the parasitic capacitors. The drawback of this addition is naturally that it somewhat increases the current consumption, but with the prototype this proved to be only around 10 percent. With no signal, the circuit consumes only 25 mA. With a signal, the output stage is responsible for nearly all of the current consumption, which rises to approximately 170 mA. In order to prevent possible interference at such high currents and avoid degrading the signal handling of the input stage, everything must be well decoupled. For instance, the combination of L2, C4 and C5 is used to decouple IC1.

The circuit around T1 must be kept as compact as possible and placed as close as possible to the voltage regulator, in order to prevent the generation of external interference or input interference. If necessary, place a noise-suppression choke (with a decoupling capacitor to ground) in series with R9. Note that this choke must be able to handle 0.3 A, and if you use additional stages, this rating must be increased proportionally. The circuit should preferably be fitted into a well-screened enclosure, and it is recommended to provide a mains filter for the 230-V input of the power supply. For the sake of completeness, we have included a standard power supply in the schematic diagram, but any other stabilized 5-V supply could be used as well. LED D3 serves as the obligatory mains power indicator.

3W FM Transmitter Circuit

Description
This is the schematic for an FM transmitter with 3 to 3.5 W output power that can be used between 90 and 110 MHz. Although the stability isnt so bad, a PLL can be used on this circuit.
This is a circuit that Ive build a few years ago for a friend, who used it in combination with the BLY88 amplifier to obtain 20 W output power. From the notes that I made at the original schematic, it worked fine with a SWR of 1 : 1.05 (quite normal at my place with my antenna).
 Circuit Diagram
 Parts:
R1,R4,R14,R15 10K 1/4W Resistor
R2,R3 22K 1/4W Resistor
R5,R13 3.9K 1/4W Resistor
R6,R11 680 Ohm 1/4W Resistor
R7 150 Ohm 1/4W Resistor
R8,R12 100 Ohm 1/4W Resistor
R9 68 Ohm 1/4W Resistor
R10 6.8K 1/4W Resistor
C1 4.7pF Ceramic Disc Capacitor
C2,C3,C4,C5,C7,C11,C12 100nF Ceramic Disc Capacitor
C6,C9,C10 10nF Ceramic Disc Capacitor
C8,C14 60pF Trimmer Capacitor
C13 82pF Ceramic Disc Capacitor
C15 27pF Ceramic Disc Capacitor
C16 22pF Ceramic Disc Capacitor
C17 10uF 25V Electrolytic Capacitor
C18 33pF Ceramic Disc Capacitor
C19 18pF Ceramic Disc Capacitor
C20 12pF Ceramic Disc Capacitor
C21,C22,C23,C24 40pF Trimmer Capacitor
C25 5pF Ceramic Disc Capacitor
L1 5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L2,L3,L5,L7,L9 6-hole Ferroxcube Wide band HF Choke (5 WDG)
L4,L6,L8 1.5 WDG, Dia 6 mm, 1 mm CuAg, Space 1 mm
L10 8 WDG, Dia 5 mm, 1 mm CuAg, Space 1 mm
D1 BB405 or BB102 or equal (most varicaps with C = 2-20 pF [approx.] will do)
Q1 2N3866
Q2,Q4 2N2219A
Q3 BF115
Q5 2N3553
U1 7810 Regulator
MIC Electret Microphone
MISC PC Board, Wire For Antenna, Heatsinks

Notes:
1. Email Rae XL Tkacik with questions, comments, etc.
2. The circuit has been tested on a normal RF-testing breadboard (with one side copper). Make some connections between the two sides. Build the transmitter in a RF-proof casing, use good connectors and cable, make a shielding between the different stages, and be aware of all the other RF rules of building.
3. Q1 and Q5 should be cooled with a heat sink. The case-pin of Q4 should be grounded.
4. C24 is for the frequency adjustment. The other trimmers must be adjusted to maximum output power with minimum SWR and input current.
5. Local laws in some states, provinces or countries may prohibit the operation of this transmitter. Check with the local authorities.
 Author: Rae XL Tkacik
e-mail: vocko@atlas.cz
Source: http://www.aaroncake.net/circuits/index.asp

Low Power FM Transmitter Circuit Using Transistor

The circuit of the FM transmitter is shown in the figure is simple design. The first stage is the oscillator, and is tuned with the variable capacitor. This circuit is use two transistor BC549 as op amp the input signal. Select an unused frequency, and carefully adjust C3 until the background noise stops. Because the trimmer cap is very sensitive, make the final frequency adjustment on the receiver. When assembling the circuit, make sure the rotor of C3 is connected to the +9V supply. This ensures that there will be minimal frequency disturbance when the screwdriver touches the adjustment shaft. You can use a small piece of non copper-clad circuit board to make a screwdriver - this will not alter the frequency.

How does this circuit work? The frequency stability is improved considerably by adding a capacitor from the base of Q1 to ground. This ensures that the transistor operates in true common base at RF. A value of 1nF (ceramic) as shown is suitable, and will also limit the HF response to 15 kHz, this is a benefit for a simple circuit like this, and even commercial FM is usually limited to a 15 kHz bandwidth. Q1 is the oscillator, and is a conventional design. L1 and C3 (in parallel with C2) tune the circuit to the desired frequency, and the output (from the emitter of Q1) is fed to the buffer and amplifier Q2. This isolates the antenna from the oscillator giving much better frequency stability, as well as providing considerable extra gain. L2 and C6 form a tuned collector load, and C7 helps to further isolate the circuit from the antenna, as well as preventing any possibility of short circuits should the antenna contact the grounded metal case that would normally be used for the complete transmitter.

The audio signal applied to the base of Q1 causes the frequency to change, as the transistors collector current is modulated by the audio. This provides the frequency modulation (FM), that can be received on any standard FM band receiver. The audio input must be kept to a maximum of about 100mV, although this will vary somewhat from one unit to the next. Higher levels will cause the deviation (the maximum frequency shift) to exceed the limits in the receiver usually ± 75 kHz. With the value shown for C1, this limits the lower frequency response to about 50 Hz (based only on R1, which is somewhat pessimistic), if you need to go lower than this, then use a 1uF cap instead, which will allow a response down to at least 15 Hz. C1 may be polyester or mylar, or a 1uF electrolytic may be used, either bipolar or polarized. If polarized, the positive terminal must connect to the 10k resistor.

AM Transmitter circuit analysis

AM Transmitter circuit analysis


Parts of the transmitter AM:

1. The input signal
The input signal in the form of electrical signals generated by mechanical equipment modifier into electrical vibrations. Tools that generate these signals include a microphone, LPs, and others. Power signals issued by these tools, the amplitude is still too small, so it requires strengthening again.


AM Transmitter circuit analysis 

2. Audio amplifier
Audio signal that is still small signal voltage amplitude will be strengthened, so that the resulting stress intensity audio signal is strong. Amplifier section can be either audio amplifier or preamp only with the amplifier end.

3. Oscillator circuit
Oscillator circuit is an electronic circuit that functions to produce high vibration. The frequency of the resulting circuit is high because if low, this electrical vibration will not radiate much.
Oscillator which is used in the transmitter is the oscillator RF. RF oscillator is a high frequency generator that serves as a signal carrier. Terms oscillator which is capable of generating both high-frequency equipment. Electronic components that can generate these frequencies is Crystal. Crystals are commonly used in FM transmitter has rangkainan 27MHz output frequency.

4. Buffer amplifier (Buffer)
Buffer serves to insulate the RF oscillator with power amplifier, so the fixed oscillator frequency. In addition, this section also reinforces the amplitude of RF signals.

5. Modulator
Modulator is part of an audio signal / information signal with carrier signal. In AM transmitters, the carrier signal amplitude changes are made in accordance with changes in signal amplitude information.

6. Power amplifier
Served to strengthen the power amplifier before dikirimkam termodulsi signal to the antenna to be transmitted. Type of amplifier used is a class C power amplifier class C power amplifier diplih because of its ability to strengthen the radio frequency (above 20kHz). Transistors are used in this amplifier is the RF power transistor, which has the characteristics of the output power ranged from 1 to 75 watts.

7. Power supply
Power supply is a source of power for the transmitter circuit to operate. At the transmitter power supply is required with a low level of ripple DC. It is intended to prevent hum.

8. Antenna
Antennas in a transmitter is spearheading the delivery of a radio signal transmitter to a receiver. If the antenna is used at a transmitter not meeting the correct specification, then the results are not expected to be achieved. In addition to the range to be erratic also the possibility of damage to the transmitter circuit due to back pressure from the antenna. When the rod antenna is widely used on aircraft such as the transistor radio, car radio receiver, walky Talky, Handy Talky, and so forth.



How it works series AM transmitters:

This powerful AM transmitters ntuk fairly large, use the tuner 3.587 mhz ceramic resonator and resonator filters are also sold with a value of 5.5 mhz, 7.7 mhz and 10.7 mhz.Jarak transmitter range is approximately 2-4 km. the working principle of this circuit are: filter resonator / ceramic filters generate value from the filter frequency resonator tsb. This frequency is amplified by the transistor can be changed so that t1.frekuensi dpperlukan C7 as a regulator / placement. superimposed sound signal through the audio transformer.frekuensi which awakened by the filter resonator and fed t1 kepenguat to be strengthened further so as to achieve the desired power passed to the antenna. t2 and t3 as a buffer as a final power amp

FM Transmitter Circuit Type Versatile

This is a design circuit diagram of a versatile FM transmitter. This circuit doesn’t have a coil. The circuit is simple and easy to assemble. This circuit is work based on gate logic concept. This is the figure of the circuit.


The gate N1 acts as a buffer for strengthening the signals from the condenser microphone. The inverter N2 with its associated components forms a radio frequency oscillator in the FM region. The varicaps diode BB109 is used for frequency modulating the audio signal to the carrier wave generated by the oscillator. Inverters N4 t0 N6 are used to drive the antenna. As the N4, N5, N6 are connected in parallel their effective output impedance is very less and can easily drive the antenna. All electrolytic capacitors must be rated 10V.

This circuit is use a 10 cm long wire as antenna. Gates N1 to N6 belong to same IC CD4069. The battery can be a 9V transistor radio battery. Adapters are not recommended because they would induce noise in the circuit.