• home

Push Off Push On

The ubiquitous 555 has yet another airing with this bistable using a simple push-button to provide a push-on, push-off action. It uses the same principle of the stored charge in a capacitor taking a Schmitt trigger through its dead-band. Whereas the Schmitt trigger in that reference was made from discrete components, the in-built dead-band arising from the two comparators, resistor chain and bistable within the 555 is used instead. The circuit demonstrates a stand-by switch, the state of which is indicated by illumination of either an orange or red LED, exclusively driven by the bipolar output of pin 3. Open-collector output (pin 7) pulls-in a 100mA relay to drive the application circuit; obviously if an ON status LED is provided elsewhere, then the relay, two LEDs and two resistors can be omitted, with pin 3 being used to drive the application circuit, either directly or via a transistor.
Push Off  Push On circuit schematic
The original NE555 (non-CMOS) can source or sink 200mA from / into pin 3. Component values are not critical; the ‘dead-band’ at input pins 2 and 6 is between 1/3 and 2/3 of the supply voltage. When the pushbutton is open-circuit, the input is clamped within this zone (at half the supply voltage) by two equal-value resistors, Rb. To prevent the circuit powering-up into an unknown condition, a power-up reset may be applied with a resistor from supply to pin 4 and capacitor to ground. A capacitor and high-value resistor (Rt) provide a memory of the output state just prior to pushing the button and creates a dead time, during which button contact bounce will not cause any further change. When the button is pressed, the stored charge is sufficient to flip the output to the opposite state before the charge is dissipated and clamped back into the neutral zone by resistors Rb. A minimum of 0.1 µF will work, but it is safer to allow for button contact-bounce or hand tremble; 10 µF with 220 k gives approximately a 2-second response.

Voltage On Bargraph Display

The LM3914 is a truly versatile component. Besides LEDs, only a few other components are needed to make the ‘bidirectional’ bargraph voltmeter shown here. The circuit is similar to a conventional bar display, but it offers a possibility to change the direction in which the LEDs are switched on. This may be useful, for example, when positive and negative voltages are measured. For a positive input voltage, the LEDs are switched on in the usual manner, that is, from D3 to D12, while for negative voltages, the LEDs are switched on in the opposite direction, from D12 to D3. Obviously, the negative voltage must be ‘rectified’, i.e. inverted, before the measurement.

A suitable circuit for this purpose is presented in the article ‘Absolute-value meter with polarity detector’ elsewhere in this website. A set of transistor switches (MOSFETs) controls the direction in which the LEDs light. When the control voltage is high (+6V, according to the schematics, but any voltage that is at least 3V higher than reference voltage will do), T1 and T4 are switched on, while the other two MOSFETs are off. In this way, the LM3194 is configured in the usual manner with the top end of the resistor network connected to the internal voltage reference and the low end connected to ground.


As the input voltage rises, the comparators inside the LM3914 will cause the indicator LEDs to be switched on one by one, starting with D3. When the control voltage is lower than about –3V, T2 and T3 are switched on while T1 and T4 are off. Consequently, the ends of the resistor network are connected the other way around: the top end goes to ground and the low end, to the reference voltage. The first LED to be switched on will then be D12; i.e., the LEDs that forms the bargraph display light in the opposite direction. Although not documented by the manufacturer of the LM3914, this option works well, but only in bar mode (in dot mode, internal logic disables any lower-numbered LEDs when a higher-numbered LED s on, which obviously conflicts with our purposes).

To achieve good symmetry, an adjustable resistor is added to the voltage divider in the LM3914. Using a DVM, adjust the preset until the voltage across P1+R4 equals 1/11th part of Urefout. Sensitivity is determined with the ratio of resistors R5 and P2. If, for example, the reference voltage is set to 2.2 V by means of P2, there will be a voltage drop of 200 mV per resistor in the ladder network (including R4-P1). So, the first LED will switch on when the input voltage exceeds 200 mV, the second, at 400 mV, and so on, and the whole display will be on at 2 V. The circuit draws about 100 mA when all LEDs are switched on.

Driver On Line Follower Robot

Motor Drive On Line Follower Robot - To move the Line Follower 2 options can be used, namely motor or DC motor servo motor. If you want to use a DC motor, it must use a DC motor is mounted gear system (geared motors DC).Kind of like it is still difficult to find in the market, so the choice often falls to the servo motor.Another advantage of the servo motor is a servo motor can be controlled directly from the microcontroller PIC16F84 with no extra-Driver IC again.

Motor Drive On Line Follower Robot
Motor Drive On Line Follower Robot
Wheel Drive On Line Follower Robot - Wheels are used in line follower may vary - kinds, ranging from the brand, type, dimensions, and so forth. Line Follower Robot are generally categorized based on the number of wheels it has.Starting from the robot with two wheels, three wheels or four wheels. But that is commonly used is a robot with three or four wheels.

Wheel Drive On Line Follower Robot
Wheel Drive On Line Follower Robot 

Placed behind a pair of wheels connected by two motors each - each have an independent pace.It is important that the robot can turn left and to right and set the desired rotation rounds. While the front wheels could use a caster wheel that serves as a buffer. Many brands of caster wheels that can be used, one of the most famous is from the manufacturer Tamiya. However, no cane akarpun so - if we want a cheaper and sometimes free, odor-preventing former rodadeodorant can used as a caster wheel.

In the Line Follower Robot Microcontroller Many types of microcontrollers that can be used in line follower robot, some examples include AT89C2051 (8051 Core), AT89C51 (8051 Core), ATmega8 (AVR Core), ATmega16 (AVR Core) and many more.

In the microcontroller, the program will be included so that the robot can adjust the rotation speed of each motor and able to perform the desired movement. Because the line follower robot speed is high enough, then some of the control algorithm needs to be applied to a robot capable of running smoothly. Control that can be a continuous control, PID, fuzzy logic, or the other.

Speed setting is important, especially when faced with change of trajectory, from a straight trajectory to bend or otherwise of the bend to the straight path. Just as when the robot moves fast and then find a corner, then the robot would be bounced. That requires a series of dynamic motor speed control depending on the type of trajectory is traversed. If the robot goes straight, the speed of the robot cultivated at a maximum. If the condition of the bend, then the speed is reduced depends on the sharpness of the bend. In essence, the speed of the robot is made flexible according to the situation on the ground. On the robot, the speed reduction can be done using the PWM (Pulse widht Modulation) controller, namely the reduction of speed by reducing the current to the motor.